Search results for "mutual information"
showing 10 items of 66 documents
Optimal Sampling Period and Required Number of Samples for OSTBC-MIMO Rayleigh Fading Channel Capacity Simulators
2014
The purpose of this paper is to contribute to the performance assessment of channel capacity simulators. Here, we consider the instantaneous capacity (also referred to as the mutual information) in orthogonal space-time block code (OSTBC) transceiver systems over multiple-input multiple-output (MIMO) Rayleigh fading channels. To ensure that the level-crossing rate (LCR) of the instantaneous capacity can efficiently and accurately be simulated, we derive closed-form approximate solutions to the optimal sampling period and the required number of samples to be generated. Several numerical examples will be presented to illustrate the usefulness of our procedure. It will also be shown that the d…
An Information-Theoretic Framework to Measure the Dynamic Interaction between Neural Spike Trains
2021
Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynami…
Visual Cortex Performs a Sort of Non-linear ICA
2010
Here, the standard V1 cortex model optimized to reproduce image distortion psychophysics is shown to have nice statistical properties, e.g. approximate factorization of the PDF of natural images. These results confirm the efficient encoding hypothesis that aims to explain the organization of biological sensors by information theory arguments.
Multi-modal Medical Image Registration by Local Affine Transformations
2018
Image registration is the process of finding the geometric transformation that, applied to the floating image, gives the registered image with the highest similarity to the reference image. Registering a pair of images involves the definition of a similarity function in terms of the parameters of the geometric transformation that allows the registration. This paper proposes to register a pair of images by iteratively maximizing the empirical mutual information through coordinate gradient descent. Hence, the registered image is obtained by applying a sequence of local affine transformations. Rather than adopting a uniformly spaced grid to select image blocks to locally register, as done by s…
A measure of concurrent neural firing activity based on mutual information
2020
AbstractMultiple methods have been developed in an attempt to quantify stimulus-induced neural coordination and to understand internal coordination of neuronal responses by examining the synchronization phenomena in neural discharge patterns. In this work we propose a novel approach to estimate the degree of concomitant firing between two neural units, based on a modified form of mutual information (MI) applied to a two-state representation of the firing activity. The binary profile of each single unit unfolds its discharge activity in time by decomposition into the state of neural quiescence/low activity and state of moderate firing/bursting. Then, the MI computed between the two binary st…
Visual Information Fidelity with better Vision Models and better Mutual Information Estimates
2021
Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex
2016
Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimul…
Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer
2014
In the study of interacting physiological systems, model-free tools for time series analysis are fundamental to provide a proper description of how the coupling among systems arises from the multiple involved regulatory mechanisms. This study presents an approach which evaluates direction, magnitude, and exact timing of the information transfer between two time series belonging to a multivariate dataset. The approach performs a decomposition of the well-known transfer entropy (TE) which achieves 1) identifying, according to a lag-specific information-theoretic formulation of the concept of Granger causality, the set of time lags associated with significant information transfer, and 2) assig…
Conditional Entropy-Based Evaluation of Information Dynamics in Physiological Systems
2014
We present a framework for quantifying the dynamics of information in coupled physiological systems based on the notion of conditional entropy (CondEn). First, we revisit some basic concepts of information dynamics, providing definitions of self entropy (SE), cross entropy (CE) and transfer entropy (TE) as measures of information storage and transfer in bivariate systems. We discuss also the generalization to multivariate systems, showing the importance of SE, CE and TE as relevant factors in the decomposition of the system predictive information. Then, we show how all these measures can be expressed in terms of CondEn, and devise accordingly a framework for their data-efficient estimation.…
Mutual information-based feature selection for low-cost BCIs based on motor imagery
2016
In the present study a feature selection algorithm based on mutual information (MI) was applied to electro-encephalographic (EEG) data acquired during three different motor imagery tasks from two dataset: Dataset I from BCI Competition IV including full scalp recordings from four subjects, and new data recorded from three subjects using the popular low-cost Emotiv EPOC EEG headset. The aim was to evaluate optimal channels and band-power (BP) features for motor imagery tasks discrimination, in order to assess the feasibility of a portable low-cost motor imagery based Brain-Computer Interface (BCI) system. The minimal sub set of features most relevant to task description and less redundant to…